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ABSTRACT 

Consider (X, 5 r, ~, T) a Lebesgue probability space and measure preserving 

invertible map. We call this a dynamical system. For a subset A E 5 r, 

by TA: A --* A we m e a n  the  induced map,  TA(X ) : TrA(~)(X) where  

rA(x) = min{i  > 0: Ti(x) E A}. Such induced m a p s  can  be  topologized 

by the  na tu ra l  metr ic  D(A, A') = tt(A/kA I) on .T" rood sets  of measu re  

zero. We discuss here  ergodic propert ies  of TA which are residual  in this  

metr ic .  T h e  first t heo rem is due to Conze. 

THEOREM 1 (Conze): For T ergodic, TA is weakly mixing for a residual 

set  of  A. 

THEOREM 2: For T ergodic, O-entropy and  loosely Bernoulli, TA is rank-1 

and rigid for a residual set  of A. 

THEOREM 3: For T ergodic, positive en t ropy  and  loosely Bernoulli, TA is 

Bernoulli for a residual set of A. 

THEOREM 4: For T ergodic of positive entropy, TA is a K-automorphism 

for a residual set  of  A. 

A s t r eng then ing  of T h e o r e m  1 asser ts  t ha t  A can  be  chosen to lie inside 

a given factor a lgebra  of T.  We also discuss even K a k u t a n i  equivalence 

analogues  of T heo rems  1-4. 
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I n t r o d u c t i o n  

Much work has been done to understand the residual dynamics of invariant mea- 

sures for homeomorphisms of a compact metric space. In particular suppose ~ is 

an infinite cartesian product ~ = ~)~=_~ ~ where each ~ is a copy of some fixed 

compact metric space (Y],0, m), and let a be the left shift on this space $ of se- 

quences. Let A4(~, a) be the space of all a-invariant borel probability measures. 

A4(~, a) is a compact, convex metric space in the weak* topology and its extreme 

points are the ergodic measures. Let JQ(~,a)  = {(~, B, u,a): v E Ad(~,a)} 

topologized with the weak* topology inherited from A4(~, a). 

The following result is essentially well-known, and follows easily from the cor- 

responding statement about the usual weak topology on the group of all measure- 

preserving map (see e.g. [H][K,S]). 

PROPOSITION 1: A residual set of systems (~, B, ~, a) E J~.4(~, a) are weakly 

mixing, rank-1 and rigid. 

We wish to consider a different topological setting in which to examine residual 

behavior, the set of induced maps for a particular dynamical system (X, .~, #, T). 

Consider the collection of such induced maps TA acting on A with renormalized 

measure #IA. These form a class of dynamical systems metrized by the natural 

metric D(A, A') = #(AAA').  Call this metric space of dynamical systems A,~T. 

Residuality in this space was first studied by Conze [C], who proved that for T 

ergodic the weakly mixing systems are residual in A~T (Theorem 1 above). We 

will prove (Theorems 2, 3, 4) that in the appropriate situations the rank one and 

rigid systems, the Bernoulli systems and the K systems, respectively, are residual 

in AAT. We also include a proof of Theorem 1, as it follows immediately from 

the density of the weakly mixing systems [FO] (essentially this wa~ known earlier 

- -  see [Ch]) together with a simple general principle, Lemma 3 below, which is 

also used in the proof of Theorem 2. 

In Theorems 2, 3 and 4 the density of the relevant class was already known 

([O,R,W],[O,S]); what is new here is that  these classes are G~'s. Theorem 1 has 

the following useful strengthening. 

THEOREM 5: Suppose T ergodic and G C 3 r is a non-atomic factor algebra [or 

T. Then the class o[ A 's in ~ for which TA is weakly mixing, as a trans[ormation 

on ~,  is residual in ~. 

In fact a simple observation about the proof in [C] of Theorem 1 actually gives 
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a proof of Theorem 5 as well - -  this was pointed out to us by J.-P. Thouvenot. 

We give a quite different and completely self-contained proof of Theorem 5 (and 

hence also of Theorem 1). As an example of an application of Theorem 5 we 

mention the following result which follows from Theorems 3 and 5, [O,R,W] 

and [R]. 

COROLLARY 6: Suppose that ( X, jz, #, T) is a loosely Bernoulli positive entropy 

system, G C J: is a factor algebra for T and T is relatively isometric as an 

extension of its restriction to G. Then the A 's in G such that TA is Bernoulli on 

jr form a residual class in G 

Theorems 1-5 all have analogues in the context of even Kakutani equivalence. 

Recall ([F,J,R], [J,R]) that  a time change S of T is a map having a.e. the same 

orbits as T, and S is said to be a Kakutani time change of T if there is a non-null 

A E ~- such that TA = SA. We denote by K(T)  the space of Kakutani time 

changes of T. K(T )  carries a complete metric d defined by 

d(S ,S  1) = 1 - s u p { p ( A ) : S A  = S~A}. 

THEOREM 1': For T ergodic {S E K(T): S is weakly mixing } is residual in 

K(T) .  

THEOREM 2': For T loosely Bernoulli of zero entropy {S E K(T) :  S is rank 1 

and rigid} is residual in K(T) .  

THEOREM 31: For T loosely Bernoulli of positive entropy {S E K(T) :  S is 

Bernoulli} is residual in K (T). 

THEOREM 4': For T ergodic of positive entropy {S E K(T) :  S /s a 

K-automorphism} is residual in K(T) .  

If G is a factor algebra for T, a time change S of T is called G-measurable if 

SG = G, that  is Sx = T'~(X)x with n(.) F-measurable. We denote by Kg(T) the 

set of F-measurable time changes S of T such that SA = TA for some A in G. 

K~(T) is a closed subset of K(T) .  

THEOREM 51: {S E Kg(T):  S is weakly mixing} is residual in Kg(T).  

Theorems 31 and 51 are used in [F,J,R] in the proof of a Kakutani equivalence 

version of the relative isomorphism theorem of [R]. 
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We will prove only the unprimed theorems. The proofs of the primed theorems 

are exactly parallel, although there is no apparent method of deducing one set 

of theorems from the other. 

Our proof of Theorem 3 is short, but it invokes the Kakutani equivalence theory 

[O,R,W] for the required density. However, Fieldsteel IF] has independently found 

a self-contained proof which in fact reduces the proof of the equivalence theorem, 

at least in the positive entropy case, to the isomorphism theory for Bernoulli 

shifts. 

Our first step will be to show that MT can be continuously embedded in a shift 

space h~/(~, a) for an appropriate choice of E0. It will follow that any subset of 

/~(~,  a) which is a G~ is also a G~ when viewed, via pullback, as a subset of MT. 
Theorems 1 and 2 then follow almost for free from Proposition 1. 

Embedding J ~ T  in a shif t  s p a c e  

Fix a dynamical system (X, .~, #, T) and let {Pi}i~176 be a refining and generating 

sequence of partitions. Let P~ = {P(i,1),P(~,2),...,P(i,k,)} and for each point 
OO 

x �9 X,  x �9 C~(x) = P(~j(x,i)) where C~+I(x) C_ C~(x) and N Ci(x) = {x}. 
i=1 

Set 
<3O 

= |  . .  

i = l  

with the compact metric product topology. A point s �9 ~o is a function s: 1~ --~ l~t 

such that s(i) �9 {1, . . .  , ki}. We can define an injection r X -* ~o by 

r = j(x,i). 

Thus r is simply the sequence of subscripts of the branch in the tree of 

partitions {Pi} intersecting to x. r is a borel map in that r C_C_ ~c. Moreover 
= oo 

r ~" modulo sets of p-measure zero. Set E = (~i=-~o ~, where each E~ 

is just a copy of E0, and let a be the left shift on the sequences of E. 

For any set A E 5 c let CA: A ~ ~ be given by (r = r Notice 

CATA(X) = aCA(x), i.e. r conjugates (TA,X) to (a,r  Let VA E A4(~,a)  

be r an ergodic a-invariant measure. 

LEMMA 1: The dynamical system (~,,B, VA,a) is measurably conjugate to 

(A, .FIA, #[A, TA) by the map CA. 
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COROLLARY 2: The map ~b: .7" ~ .M(E, a) given by r  = VA is one to one 

mod D, i.e. i r e ( A )  = r then D(A, A') = 0. 

Proof." If vA = CA,, then for all sets ,4 which are Pi-measurable for some i, 

p ( A n A )  ~ (A 'nA)  
#(A) p(A') 

We can find sets fi~i with 

#(A N .4~) ~ 1 and # ( A n  A~) j~ 0, 
#(A) #(A) 

i.e. #(A/kAi) -~ 0. But then # ( A ' A A , )  J .  0 and D(A, A') = 0. 

The map r ~" --~ A4(Z,a) lifts to a map r A//T --~ A~I(E,a) where 

g)(A, J:IA, #[A, TA) = (E, B, r  a). 

LEMMA 3: ~ is continuous, hence the inverse images o[ open sets in ]~4 ( ~, a) are 

open sets in MT. 

Proof: Denote by Q(i,5) c Eo the set {s �9 E0: s(i) = j} .  The topology on 

Ad(E, a) is generated by the functions 

Now 

= c E: s (k )  �9 Q(, , j )}) .  

f(i,j,k) o r = ~(Tk(p(id)))  

which is continuous in J~T as a function of A. 

COROLLARY 4: Any G~-subset in A~I(E, a) pulls hack via ~b -1 to a G~-subset 

of A/IT. 

Proof of Theorem 1: Let W C A;I(E, a) be the weakly mixing systems. This is 

a dense G~. r  consists of the weakly mixing elements of A/IT. Friedman 

and Ornstein [F,O] have shown that even the mixing elements of J~/[T a re  dense 

and so r  is residual. (Density of the weakly mixing elements is actually 

much easier - -  it essentially follows from the construction in [Ch], as well as our 

proof of Theorem 5 below.) 

Proof of  Theorem 2: Let R C_ Ad(E, a) consist of the rank-1 rigid systems. This 

is a residual set [K,S]. Certainly ~ - I (R)  consists of the rank-1 rigid elements of 

A4T. This set is empty unless T is 0-entropy and loosely Bernoulli. But if it is 

0-entropy and loosely Bernoulli, r  is dense [O,R,W]. 
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THEOREMS 3 AND 4. In both proofs we will use the fact that h(TA,-PIA) is a 

continuous function of A. The proof is a standard name counting argument very 

similar to [O,R,W] Proposition 3.4. 

Proof of Theorem 3: Let us say a process (S, P)  is e-F.D, if there is a 6 > 0 such 

that,  whenever (S ~, P~) is a process whose entropy and distribution are within 6 

of those of (S, P),  then (S', P') is within ~ of (S, P)  in the d-metric. Of course, 

finitely determined is simply e-F.D, for every ~. Now given a finite partition P 

of X and ~ > 0 let 

O(P,e) = {A C ~: (TA,P[A) is r 

We claim that O(P) = N~>00(P,  ~) is a G~. To see this it suffices to show 

that each A E O(P, r has an open neighborhood contained in O(P, 2r We know 

36 > 0 such that if (S', P~) is within 6 of (TA, P[A) in entropy and distribution 

then it is within e in d. Since the distribution and entropy of (TA, PIA) are both 

continuous functions of A, if A ~ is sufficiently close to A then (TA, P]A,) will be 

within 6/2 of (TA, PIA) in entropy and distribution, hence within ~ in d. This 

means that  if (S', P ' )  is within 6/2 of (TA,, PIA') in entropy and distribution then 

it is within r of (TA, PIA) in d, hence within 2~ of (TA,, PA') in d, establishing 

our claim. 

Finally, taking the intersection of O(P) over a countable dense collection of P ' s  

we get precisely those A's for which TA is Bernoulli, since the finitely determined 

processes are closed in d. Thus the Bernoulli's in A/IT are a G~, and they are 

dense by the Kakutani equivalence theorem [O,R,W] (this is the only place where 

we use that  T is loosely Bernoulli). 

Our proof of Theorem 4 has a vaguely similar flavor, resting as it does on 

certain residual properties of 2~l(E,a) and continuity of entropy within A/IT. 

Specifically, for any partition P, h(Ta, PIA) is a continuous function of A, but in 

A~(E, a), ht,(a, P) is only upper semi-continuous, i.e. if #~ -~ # then 

limhu,(a,P) <_ hu(a). 

Theorem 4 will follow with relative ease from the following result. 

PROPOSITION 2: For any k E N, and finite partition P, h((TA)k,P]A) is a 
continuous function of A. 

We begin the proof of this proposition with a small lemma analogous to upper 

semi-continuity of hu(a, P) in #. 
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LEMMA 6: For any subset I C_ Z, 

f(#) = hz(P11Va-i(P1)) 
iEl 

is upper semi-continuous in Ad(E, a).  

Proof: Clearly 

fN(.) = h.(Pll V : ' (P1))  
iEIA[-N,N] 

is continuous in #, and further, 

fN+l(#)  _< fN (# )  and fN (# )  N f ( # ) .  

The result follows. 

Fix k E Z and define in Z sets I0, I 1 , . . . ,  Ik-1 by 

I o = { - i k : i > O }  and I j = I o U { - t - i k : t E { 1 , 2  . . . . .  j} a n d i  E Z}. 

What  Ij  consists of are blocks of consecutive integers of length j placed 

periodically k apart .  The central block sits at indices { - 1  . . . .  , - j } .  I0 is then 

added on. What  adding on I0 does is to fatten the blocks to the left of the origin 

by one element. Here is another way to describe the sets Ij .  

Order Z as follows. We say i -~ i' if 

i = kt + f , i '  = kt'  +~'  

and 

(a) g < g' or 

(b) if e = f' ,  then t < t'. 

What  this does is to break Z into k sets according to the value of / mod(k).  If we 

call them Zt = {i E Z: i mod (k) = t}, then Zt simply inherits the usual ordering 

of Z, but all elements of Zt+l are made greater than those of Zt. In these terms 

Io = {i: i -< 0} and in general 

It = {i: i -~ t} - t. 
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L E M M A  7: For It E M ( E ,  vr), 

Proof." 

(1) h. (a  k, P1) : h.(P~l V ,~-'(P1)) 
iElo 

and 

lk-1 
(2) hp(a, P1) : ~ E h,(Pl[ V a-J(P1))" 

t=O jEIt 

Of course (1) is standard. We begin to prove (2) with the identity 
nk-1 

h,(a, P1) : Jimoo ~kh,( V a-i(P1)) 
i=0  

nk--1 
1 

= li~moo ~ E ht'(a-i(p1)l 
i=0 

: lim 1 ~ (  1 ~ _ ~  E 
t : O  {i:  ~ mod ( k ) = t ,  

0<,<,~k} 

Let us examine 

V ~-J(P~)) 
{j: j-.(i,O<j<nk} 

h.(~-~(P1)l V ~-J(P1))) 
{j: j-~i,O~j<nk} 

! ~' h,,(~-~(P,)l V ~-;(P~)). 
n 

{i: i rood (k)=t,O~i<nk} {j: j~i,O<j(nk} 

For i = t + uk, 

{j: j -.< i,O < j < nk} = (It(1 { - i , - i  + 1 , . . . , - i  + n k -  1}) +i, 

SO 

and so 

h.(~-~(F~)l V ~-~(P')) 
{j: j-~i,o<j<~k} 

= hP(~ V a-J-~(P~)) 
jEItn{-i, . . . ,--i+nk-1} 

= h.(Pll  V r 
jEItN{-i , . . . , - i+nk-1} 

1- ~ h.(~-i(Pl)l V ~-J(P1)) 
n 

{i: i mod (k)=t,O~_i<nk} {j: j-4i,O~_j<nk} 

n - 1  

1 E h.(P1)l V a-J(P1))" 
n 

u=O jCI tN{- t -uk  ..... - t+(n-u)k}  
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Notice that if we define 

H,(m) d~=~ h,(Pll 
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j E l t N { - - t - m k , . . . , - t + m k }  

395 

then this quantity decreases in m, converging to hu(Pl[ V a-J (P1)). 
jEI t  

For each choice of u, 

g , (max(u ,  n - u)) <_ h,(Pll V a-J (P l ) )  
j e l t n { - t - u k , . . . , - t + ( n - u ) k }  

_< H~(min(u, n - u)). 

Once n is large enough, for most u C {0, . . . ,  n - 1}, the left and right sides of 

this inequality will both be very close to h,(Pll V a-J  (P~)). Thus 
jEI t  

n - 1  

limoo 1 E h,(Pll V a-J(P1)) = h~(Pll V a-J(P1)) 
u=0 j E l t N { - - t - u k , . . . , - t + ( n - - u ) k }  j e l t  

completing the proof of (2). 

COROLLARY 8: In AJ(E,a) ,  ifpl ~ # and h, , (a ,  P1) ~ h,(a, P1), then for a11 
k E N ,  

h,, (a k, P1) -~ h,(a k, P1)- 

Proo~ Note that in (2) of Lemma 7, all k terms on the right hand side are 

upper semi-continuous in p. If h,~ (a, P1) ~ h,(a, P1), then all the terms on the 

right side of (2) must also converge to the corresponding terms for h~,(a, P1). In 

particular, term zero must converge. But this is just h~(a k, P1) by (1). 

Proof of Proposition 2: Just note that if Ai --~ A in ./~T, then h(TA~, PIA.) ~+ 
h(TA, PIA) and Corollary 8 gives us the result. 

Proof of Theorem 4: A system (X, Y, #, T) is K iff for all finite partitions 

P = {P1, . . . ,Ps} ,  

lim h(T k, P) = H(P) = - ~ #(Pj)log2(#(Pj) ) 
k ---* oo 

j = l  

It is enough that this be true for a countable dense family of partitions in the 

symmetric difference metric. Even less is actually necessary. It is enough that 

sup h(T k, P) = H(P) 
kEN 
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for a countable dense family of P to conclude that T is a K-system. 

Fix a system (X, $-, #, T) and let 

0(r P)  = {A e 9r: for some k e N, h(T~, PIA) > (1 -- r 

Proposition 2 tells us O(e, P)  is open. It contains the K-systems so, by [O,S], it 

is dense. Hence for each P,  

K(P) = {A E F:  sup h(T~, PIA) = H(PIA)} 
kE~ 

is residual. Intersecting over a countable dense family of partitions P,  we are left 

with exactly the K-systems. 

THEOREM 5: We will need the [ollowing lemma, whose proof is an easy 

application of Lyapunov's theorem on the range of a vector-valued measure 

([Ru, Theorem 5.5 D. (In fact, an approximate version of the lemma has a com- 

pletely elementary proof and would suffice for our purposes here.) 

LEMMA 8: Suppose (X, jr, p) is a Lebesgue probability space, G C $- is a non- 

atomic sub-a-algebra, P is any F-measurable finite partition of X,  and A = 

(A1,.. �9 , An) is any probability vector. Then there is a G-measurable partition Q 

such that Q _k P and dist Q = A. 

Proof of Theorem 5: We start with the well-known observation that  a system 

(Y, G, v, S) is weakly mixing precisely if (and only if), for all partitions P from 

some countable dense family, S has a sequence {nj } of mixing times with respect 

to P,  that is ~(S-n~ E N F )  --* ~(E)v(F) VE, F C P. (Note that {nj} is allowed 

to depend on P.) Accordingly we define 

O(P,N,r = {A C G: Iidist (TANpIE) - d i s t  PII < ~VE E P}. 

Clearly each O(P, N, r is open, so it will suffice to show that  U N > 0 0 ( P ,  N, r is 

dense for each F-measurable finite partition P and e > 0. What  we will in fact 

show is that, given A E G and 8 > 0, there is a F-measurable A t C A such that  

p(A - A') < ~ and A' E O(P, N, r for some n. Without loss of generality we can 

assume A = X, since TA is ergodic. 

We regard P as a m a p  P: X- -*  F, F the indexing set for P. I f x  C X and 

n > 0, dist(x, P, n) will denote the measure on F given by the frequencies of 

symbols in the P, n-name of X,  that is 

1 n--1 

dist (x, P, n)('y) = n ~ I{~}(P(Tr 
i=O 
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By the ergodic theorem, given 61 > 0 we can find n such that  

G = {x: Ildist (x, P ,n)  - dist Pll < 61} 

has measure 

/~(G) > 1 - 6 1 .  

Choose N >> n, let h = r N  with r large, and then let B E G be the base of a 

Rohlin tower of height h covering all but 61 of X. Let 

Q = (h~/1T-ip~ [ 
\ i=0 / B 

denote the parti t ion of B according to P, h-names and apply Lemma 8 to obtain 

a G-measurable partit ion 

such that R _L Q. 

Now let 

E = 

R: B --~ {O, . . .  , n -  1} 

n - - l r - - 1  m--1 

N N N 
m = 0 s = 0  j = 0  

and l e t A  ~ = X - E E G .  Let 

(u / r - -2  

F = T - N G  U T 8N TJB  , 
\8 =o ; =o / 

so F C E and, given 62 > 0, /x(F) > 1 - 62 if 61 is small enough and both N 

and R are large enough. Note that  each TJ(q) (q E Q, 0 <_ j <_ h - 1) is either 

contained in or disjoint from F. If ~ = TJq C F, then by the definition of G and 

construction of A' we have 

dist ( T - N  PI~) = dist (T;V x, P, n) 

for any x E q. Since T N x  E G we conclude 

Ildist (T-NPI~)  -- dist Pll < 61. 

Fixing p E P and averaging over all ~ contained in p ~ F we conclude that  

][dist (TA, N p I p A  F) - dist Pl[ < 61 

and hence 

[[dist (TA, NP[p) -- dist P][ < 

if 61 and 62 are small enough. That  is, A' E O(P, N, ~). Since #(A') > # (F)  > 

1 - 62 we can ensure that  #(A ~) > 1 - 6, so we are done. I 
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M i x i n g ?  

In this development we haven't  discussed the property of mixing at all. It  is clear 

that  mixing cannot always be residual in .A/~ T a s  it is not in the zero-entropy, 

loosely Bernoulli class. But sometimes it is, for example whenever T has positive 

entropy. Is it possible for some zero-entropy T that  the mixing elements of AdT 

are residual? Is there any way of telling for which T they are and for which T 

they are not? 
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